Fiscal Consequences of Paying Interest on Reserves

Marco Bassetto Todd Messer

Federal Reserve Bank of Chicago

April 5, 2024

Interest on Reserves in the U.S.

- Introduced as a minor tweak to remove an implicit tax on banks
- Not present at the beginning of QE1, replaced coordinated action with Treasury

Interest on Reserves in the U.S.

- Introduced as a minor tweak to remove an implicit tax on banks
- Not present at the beginning of QE1, replaced coordinated action with Treasury
- Resulted in an underappreciated enormous expansion of Fed fiscal powers

Plan of the Talk

- Lay our textbook environment of interaction between Treasury, CB
- Illustrate public finance implications of different CB strategies
- Match CB strategies with alternative Treasury strategies that would yield same fiscal risk

Plan of the Talk

- Lay our textbook environment of interaction between Treasury, CB
- Illustrate public finance implications of different CB strategies
- Match CB strategies with alternative Treasury strategies that would yield same fiscal risk
- Ultimate question: if alternative Treasury strategies are possible, who should decide fiscal risk?

Fed Liabilities since 2007

Fed Assets since 2007

Fed Maturity Structure of Assets since 2007

Interest on Reserves at the ECB and B of E

- Always part of their powers
- Not used by B of E before QE
- Deposits were nontrivial at the ECB, grew after 2008

Bank of England Liabilities since 2007

ECB Liabilities since 2007

The Model: Agents

- Households (identical)
- Treasury
- Central Bank
- Households: maximizers, Treasury and CB: automata

Technology

- Goods produced with labor, CRS technology, productivity 1
- Cash-in-advance on all goods (leisure is credit good)

Preferences

$$
E_{0} \sum_{t=0}^{\infty}\left(\prod_{s=0}^{t-1} \beta_{s}\right)\left[u\left(c_{t}\right)-\phi y_{t}\right]
$$

Discount rate shock: only shock in the economy

Traded Assets

- One-period securities issued by Treasury: $B_{t}\left(B_{t}^{B}\right.$ held by CB), interest rate R_{t}
- Consols issued by Treasury: $D_{t}\left(D_{t}^{B}\right.$ held by CB), price Q_{t}
- Money (cash, used for CIA): M_{t}
- One-period reserves at the CB: X_{t}, must pay R_{t} if positive

Equilibrium Conditions from Private Optimization

- Money demand: $M_{t} / P_{t}=L\left(R_{t}\right)$
- Fisher relation (Euler equation): $1=\beta_{t} E_{t}\left[\left(1+R_{t+1}\right) P_{t} / P_{t+1}\right]$
- Ex-dividend price of consols:

$$
Q_{t}=\frac{1}{1+R_{t}}\left[1+\beta_{t} E_{t}\left(\frac{\left(1+R_{t+1}\right) P_{t}}{P_{t+1}} Q_{t+1}\right)\right]
$$

- (Nominal) asset pricing kernel:

$$
z_{t}=\frac{1+R_{t}}{1+R_{0}} \frac{P_{0}}{P_{t}} \prod_{s=0}^{t-1} \beta_{s}
$$

Budget Constraints in Flows

- Treasury:

$$
B_{t-1}+D_{t-1}=\frac{B_{t}}{1+R_{t}}+Q_{t}\left(D_{t}-D_{t-1}\right)+S_{t}+T_{t}
$$

- CB:

$$
\begin{aligned}
& M_{t}-M_{t-1}= \\
& \frac{B_{t}^{B}}{1+R_{t}}-B_{t-1}^{B}+Q_{t}\left(D_{t}^{B}-D_{t-1}^{B}\right)-D_{t-1}^{B}+S_{t}-\frac{X_{t}}{1+R_{t}}+X_{t-1}
\end{aligned}
$$

Budget Constraints, Present-Value Form

- Treasury:

$$
B_{t-1}+\left(1+Q_{t}\right) D_{t-1}=\frac{1}{z_{t}} E_{t} \sum_{s=t}^{\infty} z_{s}\left(S_{s}+T_{s}\right)
$$

- CB:

$$
\begin{aligned}
& B_{t-1}^{B}+\left(1+Q_{t}\right) D_{t-1}^{B}-X_{t-1}-M_{t-1}+\frac{1}{z_{t}} E_{t} \sum_{s=t}^{\infty} z_{s}\left(M_{s} \frac{R_{s}}{1+R_{s}}\right)= \\
& \frac{1}{z_{t}} E_{t} \sum_{s=t}^{\infty} z_{s} S_{s}
\end{aligned}
$$

Ricardian Equivalence, Modigliani-Miller

- Ricardian equivalence holds (within the spanned set)
- Modigliani-Miller for CB: given CE, construct a new CE by:
- Increase $S_{t_{1}}$ by ΔS
- Decrease B_{s} between t_{1} and t_{2} by $\Delta S \prod_{v=t_{1}}^{s}\left(1+R_{v}\right)$
- Decrease CB holdings B_{s}^{B} by same amount, or increase X_{s} by same amount
- Decrease $S_{t_{2}}$ by $\Delta S \prod_{v=t_{1}}^{t_{2}-1}\left(1+R_{v}\right)$

Does CB Dividend Policy Matter?

- Modigliani-Miller says timing of dividend payments does not matter
- But it may matter for decisions taken over time when conflict is present. Example:

$$
S_{0}>B_{-1}^{B}+\left(1+Q_{0}\right) D_{-1}^{B}-X_{-1}-M_{-1}+\sum_{s=0}^{\infty} \mathrm{PV}_{0}\left(M_{s} \frac{R_{s}}{1+R_{s}}\right)
$$

Then CB starts period 1 with net liabilities greater than future profits, needs a transfer from Treasury.

- Timing may not matter, PV of seigniorage payments (and risk profile) does matter

Accounting for CB profits

- At historical cost:

$$
\begin{aligned}
\Pi_{t}^{H C}:= & \frac{R_{t-1}}{1+R_{t-1}}\left(B_{t-1}-X_{t-1}\right)+D_{t-1}^{B}+ \\
& \left(Q_{t}-\bar{Q}_{t-1}\right)\left(D_{t-1}^{B}-D_{t}^{B}\right) I_{D_{t-1}^{B}>D_{t}^{B}},
\end{aligned}
$$

- Marked to market:

$$
\Pi_{t}^{M M}:=\frac{R_{t-1}}{1+R_{t-1}}\left(B_{t-1}-X_{t-1}\right)+D_{t-1}^{B}+\left(Q_{t}-Q_{t-1}\right) D_{t-1}^{B}
$$

Roadmap

- Sequence of CB strategies
- Increasingly aggressive
- Review implications for CB profits

1. Bills Only

Strategy:

- No interest on reserves $\left(X_{t}=0\right)$;
- All CB assets invested in short-term debt $\left(D_{t}=0\right)$.

Implications:

$$
\Pi_{t}^{H C}=\Pi_{t}^{M M}=\frac{R_{t}}{1+R_{t}} B_{t}^{B} \geq 0
$$

- Inequalities strict, unless $C B$ holds no assets (pure fiat money)

2. Hold to Maturity

Strategy:

- No interest on reserves $\left(X_{t}=0\right)$;
- Consols are never sold $\left(D_{t} \geq D_{t-1}\right)$.

Implications:

$$
\Pi_{t}^{H C}=\frac{R_{t-1}}{1+R_{t-1}} B_{t-1}+D_{t-1}^{B} \geq 0
$$

$$
\Pi_{t}^{M M}:=\frac{R_{t-1}}{1+R_{t-1}}\left(B_{t-1}-X_{t-1}\right)+D_{t-1}^{B}+\left(Q_{t}-Q_{t-1}\right) D_{t-1}^{B}
$$

Could turn negative, but within bounds (more to come)

3. Active Trading, but no Interest on Reserves

Strategy:

- No interest on reserves $\left(X_{t}=0\right)$;
- Consols are bought and sold (but no short sales of any government debt)
Implications:
- Even $\Pi_{t}^{H C}$ can turn negative when capital losses are realized:

$$
\Pi_{t}^{H C}:=\frac{R_{t-1}}{1+R_{t-1}} B_{t-1}+D_{t-1}^{B}+\left(Q_{t}-\bar{Q}_{t-1}\right)\left(D_{t-1}^{B}-D_{t}^{B}\right) I_{D_{t-1}^{B}>D_{t}^{B}},
$$

A Special Case: Pure Fiat Money

- Assume that $M_{t} \geq M_{t-1}$; then

$$
M_{t-1} \leq \frac{1}{z_{t}} E_{t} \sum_{s=t}^{\infty} z_{s} M_{s} \frac{R_{s}}{1+R_{s}}
$$

- CB assets are not used to back money, money is "fiat"

Fiat Money and CB Solvency

With fiat money and no interest on reserves, $S_{t} \geq 0$ can be ensured independently of portfolio trades

$$
S_{t}=M_{t}-M_{t-1}+B_{t-1}^{B}+\left(1+Q_{t}\right) D_{t-1}^{B}-\frac{B_{t}^{B}}{1+R_{t}}-Q_{t} D_{t}^{B}
$$

Fiat Money and CB Solvency

With fiat money and no interest on reserves, $S_{t} \geq 0$ can be ensured independently of portfolio trades

$$
S_{t}=M_{t}-M_{t-1}+B_{t-1}^{B}+\left(1+Q_{t}\right) D_{t-1}^{B}-\frac{B_{t}^{B}}{1+R_{t}}-Q_{t} D_{t}^{B}
$$

An Equivalence Result

- Start from CE with CB buying long-term bonds
- New CE that respects bills only:
- Set

$$
\frac{\hat{B}_{t}^{B}}{1+R_{t}}=\frac{B_{t}^{B}}{1+R_{t}}+Q_{t} D_{t}^{B}
$$

- Set

$$
\begin{aligned}
\hat{S}_{t+1}=S_{t+1} & +\left[Q_{t}\left(1+R_{t}\right)-\left(1+Q_{t+1}\right)\right] D_{t}^{B}= \\
& S_{t+1}+\left(\beta_{t} E_{t}\left[\left(1+R_{t+1}\right) \frac{P_{t}}{P_{t+1}}\right]-1\right) Q_{t+1} D_{t}^{B}
\end{aligned}
$$

- Adjust B_{t}, D_{t} so that $B_{t}-B_{t}^{B}$ and $D_{t}-D_{t}^{B}$ is unaffected
- New CE has same price system, allocation, same private holdings by maturity
- CB profits always positive, fiscal risk borne by Treasury

4. Interest on Reserves

Strategy:

- Interest is paid on reserves (so $X_{t}>0$ is possible);
- Proceeds may be invested in long-term securities Implications:
- Leveraged bet on interest rate movements
- Value of portfolio side can turn negative:

$$
B_{t-1}^{B}+\left(1+Q_{t}\right) D_{t-1}^{B}-X_{t-1}
$$

- CB can take unbounded fiscal risk

Zero Interest Rates

- At zero interest rates, $X_{t}>0$, arbitrarily high risks can be run
- But if no IOR is allowed, fiscal loss immediately recognized on exit (must liquidate portfolio)
- Early warning system
- Also, under bills only, still guaranteed positive profits

Conclusion

- CB portfolio management causes fiscal risk
- Fiscal risk is unbounded with IOR
- QE can be equally well performed by Treasury by managing maturity structure
- Common instrument, conflicting objectives

