Introduction	The household present-value budget constr. (PVBC)	The gov't PVBC	The fiscal theory of the price level (FTPL)
0	0000	0000	0000000
		00000	000000000
			00
			0000000000

Bringing Fiscal Policy into Monetary Policy

Marco Bassetto

April 11, 2022

Introduction	The household present-value budget constr. (PVBC)	The gov't PVBC	The fiscal theory of the price level (FTPL)
•	0000	0000	000000
		00000	0000000000
			00
			00000000000

Motivation

- So far, we always neglected the transversality condition
- The government budget constraint did not play much of a role either
- Time for them to take center stage

Introduction	The household present-value budget constr. (PVBC)	The gov't PVBC	The fiscal theory of the price level (FTPL)
0	0000	0000	

The household present-value budget constraint (PVBC): Start from periods 0 and 1...

• Period 0:

$$W_0 = M_0 + \frac{B_0}{1+R_0} + E_0(z_{0,1}A_1)$$

 Period 1 (after multiplying by z_{0,1} and taking expected value as of period 0):

$$E_0 [z_{0,1} (B_0 + M_0 + P(y_0 - c_{10} - c_{20}) + A_1 - T_1)]$$

= $E_0 [z_{0,1} W_1] = E_0 \left[z_{0,1} \left(\frac{B_1}{1 + R_1} + M_1 + z_{1,2}A_2 \right) \right]$

Introduction	The household present-value budget constr. (PVBC)	The gov't PVBC	The fiscal theory of the price level (FTPL)
0	0000	0000	0000000 0000000000 00 00000000000

Combine periods 0 and 1

Substitute for $E_0(z_1A_1)$:

$$W_{0} = M_{0}(1 - E_{0}z_{0,1}) + B_{0}\left(\frac{1}{1 + R_{0}} - E_{0}z_{0,1}\right) + E_{0}\left[z_{0,1}\left(P(c_{10} + c_{20} - y_{0}) + T_{1} + \frac{B_{1}}{1 + R_{1}} + M_{1} + z_{1,2}A_{2}\right)\right]$$

Note: no-arbitrage requires $\frac{1}{1+R_t} = E_t z_{t,t+1}$ So,

$$W_{0} = M_{0} \frac{R_{0}}{1 + R_{0}}$$
$$+ E_{0} \left[z_{0,1} \left(P(c_{10} + c_{20} - y_{0}) + T_{1} + \frac{B_{1}}{1 + R_{1}} + M_{1} + z_{1,2}A_{2} \right) \right]$$

Introduction	The household present-value budget constr. (PVBC)	The gov't PVBC	The fiscal theory of the price level (FTPL)
0	0000	0000	0000000
		00000	000000000
			00
			0000000000

... on to periods up to J + 1...

$$W_{0} = \sum_{s=0}^{J} E_{0} z_{0,s} \frac{R_{s}}{1+R_{s}} M_{s} + \sum_{s=0}^{J} E_{0} \left[z_{0,s+1} \left(T_{s+1} - P_{s} (y_{s} - c_{1s} - c_{2s}) \right) \right] \\ + E_{0} \left[z_{0,J+1} \left(\frac{B_{J+1}}{1+R_{J+1}} + M_{J+1} + z_{J+1,J+2} A_{J+2} \right) \right] \\ = \sum_{s=0}^{J} E_{0} z_{0,s} \frac{R_{s}}{1+R_{s}} M_{s} + \sum_{s=0}^{J} E_{0} \left[z_{0,s+1} \left(T_{s+1} - P_{s} (y_{s} - c_{1s} - c_{2s}) \right) \right] \\ + E_{0} \left[z_{0,J+1} W_{J+1} \right]$$

Introduction	The household present-value budget constr. (PVBC)	The gov't PVBC	The fiscal theory of the price level (FTPL)
0	0000	0000	0000000
		00000	0000000000
			00
			0000000000

... and to infinity

Use no-Ponzi to replace $E_0[z_{0,J+1}W_{J+1}]$ and take limit as $J \to \infty$:

•
$$E_0[z_{0,J+1}W_{J+1}] \ge -E_0[\sum_{s=J+1}^{\infty} z_{0,s+1}(P_sy_s - T_{s+1})]$$

•
$$W_0 \ge \sum_{s=0}^{J} E_0 z_{0,s} \frac{R_s}{1+R_s} M_s + \sum_{s=0}^{\infty} E_0 [z_{0,s+1} (T_{s+1} - P_s y_s)] + \sum_{s=0}^{J} E_0 [z_{0,s+1} p_s (c_{1,s} + c_{2,s})]$$

$$+\sum_{s=0}^{\infty} E_0 \left[z_{0,s+1} p_s (c_{1s} + c_{2s}) \right]$$

•
$$W_0 \ge \frac{R_0}{1+R_0} M_0 + \sum_{s=0} E_0 \left[z_{0,s+1} \left(T_{s+1} - P_s y_s \right) \right]$$

 $+ \sum_{s=0}^{\infty} E_0 \left[z_{0,s+1} \left(p_s(c_{1s} + c_{2s}) + \frac{R_{s+1}}{1+R_{s+1}} M_{s+1} \right) \right]_{s=0}$

Towards a government PVBC

- Repeat same steps on the government side
- Very similar, what is asset for household is liability for gov't
- No output, consumption (gov't does not trade in goods)
- Period 0 (note initial position of gov't is opposite of households, so the government owes W₀)

$$W_0 = M_0^S + \frac{B_0^S}{1 + R_0} = M_0^S + B_0 E_0 z_{0,1}$$

Period 1 (after multiplying by z_{0,1} and taking exp value as of period 0)

$$E_0[z_{0,1}(B_0^S + M_0^S - T_1)] = E_0\left[z_{0,1}\left(z_{1,2}B_1^S + M_1^S\right)\right]$$

Introduction	The household present-value budget constr. (PVBC)	The gov't PVBC	The fiscal theory of the price level (FTPL)
0	0000	0000	0000000 0000000000 00

Combine periods

• Combine with period 1:

$$W_{0} = M_{0}^{S} \frac{R_{0}}{1+R_{0}} + E_{0} \left[z_{0,1} \left(T_{1} + \frac{B_{1}^{S}}{1+R_{1}} + M_{1}^{S} \right) \right]$$

• On to periods up to J + 1:

$$W_{0} = \sum_{s=0}^{J} E_{0} z_{0,s} \frac{R_{s}}{1+R_{s}} M_{s}^{S} + \sum_{s=0}^{J} E_{0} z_{0,s+1} T_{s+1} + E_{0} [z_{0,J+1} \left(\frac{B_{J+1}}{1+R_{J+1}} + M_{J+1}^{S} \right)]$$

• Does gov't have a transversality condition?

Introduction	The household present-value budget constr. (PVBC)	The gov't PVBC	The fiscal theory of the price level (FTPL)
0	0000	0000	0000000 0000000000 00

Combine periods

• Combine with period 1:

$$W_{0} = M_{0}^{S} \frac{R_{0}}{1+R_{0}} + E_{0} \left[z_{0,1} \left(T_{1} + \frac{B_{1}^{S}}{1+R_{1}} + M_{1}^{S} \right) \right]$$

• On to periods up to J + 1:

$$W_{0} = \sum_{s=0}^{J} E_{0} z_{0,s} \frac{R_{s}}{1+R_{s}} M_{s}^{S} + \sum_{s=0}^{J} E_{0} z_{0,s+1} T_{s+1} + E_{0} [z_{0,J+1} \left(\frac{B_{J+1}}{1+R_{J+1}} + M_{J+1}^{S} \right)]$$

- Does gov't have a transversality condition?
- Does gov't have a no-Ponzi condition?

イロト 不得 トイヨト イヨト 二日

Introduction	The household present-value budget constr. (PVBC)	The gov't PVBC	The fiscal theory of the price level (FTPL)
0	0000	0000	0000000 0000000000 00 00000000000

Gov't PVBC

If we could say $\lim_{J\to\infty} E_0[z_{0,J+1}(B_{J+1}^S/(1+R_{J+1})+M_{J+1}^S)] = 0$, then get Gov't PVBC

$$W_{0} = \frac{R_{0}}{1+R_{0}}M_{0}^{S} + \sum_{s=0}^{\infty} E_{0}\left[z_{0,s+1}\left(T_{s+1} + \frac{R_{s+1}}{1+R_{s+1}}M_{s+1}^{S}\right)\right]$$

Seigniorage (inflation tax):

$$\frac{R_0}{1+R_0}M_0^S + \sum_{s=0}^{\infty} E_0 \left[z_{0,s+1} \frac{R_{s+1}}{1+R_{s+1}} M_{s+1}^S \right]$$

Seigniorage are revenues that gov't cashes because money is an interest-free loan

Introduction	The household present-value budget constr. (PVBC)	The gov't PVBC	The fiscal theory of the price level (FTPL)
0	0000	0000	0000000 0000000000 00 00000000000

A different expression for seigniorage

$$\frac{R_0}{1+R_0}M_0^S + \sum_{s=0}^{\infty} E_0 \left[z_{0,s+1} \frac{R_{s+1}}{1+R_{s+1}} M_{s+1}^S \right] = M_0^S (1-E_0 z_{0,1}) + \sum_{s=0}^{\infty} E_0 \left[z_{0,s+1} M_{s+1}^S (1-z_{s+1,s+2}) \right] = M_0^S + \sum_{s=0}^{\infty} E_0 \left[z_{0,s+1} (M_{s+1}^S - M_s^S) \right]$$

- Seigniorage are revenues from printing money
- Notice: two definitions are equivalent ways of writing the same thing!

Introduction	The household present-value budget constr. (PVBC)	The gov't PVBC	The fiscal theory of the price level (FTPL)
0	0000	0000 00000	0000000 00000000000 00 00000000000

 Households: no-Ponzi imposed because otherwise would get stuck in a debt spiral

Introduction	The household present-value budget constr. (PVBC)	The gov't PVBC	The fiscal theory of the price level (FTPL)
0	0000	0000 00000	

- Households: no-Ponzi imposed because otherwise would get stuck in a debt spiral
- Gov't: we did not impose limits on taxes, can get out of spiral by having arbitrarily large taxes

Introduction	The household present-value budget constr. (PVBC)	The gov't PVBC	The fiscal theory of the price level (FTPL)
0	0000	0000 00000	

- Households: no-Ponzi imposed because otherwise would get stuck in a debt spiral
- Gov't: we did not impose limits on taxes, can get out of spiral by having arbitrarily large taxes
- Suppose real bound is imposed on taxes

Introduction	The household present-value budget constr. (PVBC)	The gov't PVBC	The fiscal theory of the price level (FTPL)
0	0000	0000 00000	

- Households: no-Ponzi imposed because otherwise would get stuck in a debt spiral
- Gov't: we did not impose limits on taxes, can get out of spiral by having arbitrarily large taxes
- Suppose real bound is imposed on taxes
- Debt is still a promise to money

Introduction	The household present-value budget constr. (PVBC)	The gov't PVBC	The fiscal theory of the price level (FTPL)
0	0000	0000 00000	

- Households: no-Ponzi imposed because otherwise would get stuck in a debt spiral
- Gov't: we did not impose limits on taxes, can get out of spiral by having arbitrarily large taxes
- Suppose real bound is imposed on taxes
- Debt is still a promise to money Can gov't print unlimited quantities of money?

Introduction	The household present-value budget constr. (PVBC)	The gov't PVBC	The fiscal theory of the price level (FTPL)
0	0000	0000	0000000 0000000000 00 00000000000

The transversality condition under a money supply rule

- Under money supply rule, gov't cannot print unlimited money
- Then, taxes must adjust to meet budget constraint
- Limit on taxes ⇒ no-Ponzi condition, at least for debt:

$$\implies \lim_{J\to\infty} E_0[z_{0,J}B_J^S] = 0$$

- Our example tax policy satisfied this (we had $B_t^S \equiv 0$)
- There are many others that would work, but, given prices, gov't must meet obligations

Introduction	The household present-value budget constr. (PVBC)	The gov't PVBC	The fiscal theory of the price level (FTPL)
0	0000	0000	0000000 0000000000 00 00000000000

The transversality condition under a money supply rule

- Under money supply rule, gov't cannot print unlimited money
- Then, taxes must adjust to meet budget constraint
- Limit on taxes ⇒ no-Ponzi condition, at least for debt:

$$\implies \lim_{J\to\infty} E_0[z_{0,J}B_J^S] = 0$$

- Our example tax policy satisfied this (we had $B_t^S \equiv 0$)
- There are many others that would work, but, given prices, gov't must meet obligations
- Even here, no need to back money with tax revenue

Introduction	The household present-value budget constr. (PVBC)	The gov't PVBC	The fiscal theory of the price level (FTPL)
0	0000	0000	

The transversality condition under an interest-rate rule

- Under interest-rate rule, money supply infinitely elastic
- Gov't can meet debt obligations by printing money
- → no-Ponzi constraint absent, transversality condition not imposed on gov't

 Introduction
 The household present-value budget constr. (PVBC)
 The gov't PVBC
 The fiscal theory of the price level (FTPL)

 0
 0000
 0000
 000000
 0000000
 0000000

 000
 000000
 000000
 0000000
 0000000
 0000000

A first peek at CB independence

- Right now, we have only a consolidated gov't budget constraint
- Treasury can't print money to repay debt
- CB can (though usually done in a round-about way)
- Independent CB ⇒ Treasury may face limit

Introduction The household present-value budget constr. (PVBC) The gov't PVBC The fiscal theory of the price level (FTPL)

One last important point

- B_t^S : nominal debt
- no-Ponzi applies to real debt (denominated in gold, foreign currency)

Does this matter?

Households will exhaust their net worth, PVBC will hold as equality

$$\lim_{J\to\infty}E_0[z_{0,J+1}W_{J+1}]=0$$

Substitute market clearing:

$$\lim_{J \to \infty} E_0[z_{0,J+1}\left(\frac{B_{J+1}^S}{1+R_{J+1}} + M_{J+1}^S\right)] = 0$$

• Voilà: transversality condition obtained, write PVBC:

$$W_{0} = \frac{R_{0}}{1+R_{0}}M_{0}^{S} + \sum_{s=0}^{\infty} E_{0}\left[z_{0,s+1}\left(T_{s+1} + \frac{R_{s+1}}{1+R_{s+1}}M_{s+1}^{S}\right)\right]$$

Introduction	The household present-value budget constr. (PVBC)	The gov't PVBC	The fiscal theory of the price level (FTPL)
0	0000	0000	

It does matter!

- Market clearing is an equilibrium condition
- Does not have to hold for all prices
- If gov't PVBC does not hold, what adjusts: prices or taxes?

Introduction	The household present-value budget constr. (PVBC)	The gov't PVBC	The fiscal theory of the price level (FTPL)
0	0000	0000	00000000000000000000000000000000000000
			00000000000

What adjusts?

- Money supply rule, real debt, independent CB: taxes
- Otherwise: maybe taxes, maybe prices
- When prices adjust, fiscal theory of the price level (FTPL)

Introduction	The household present-value budget constr. (PVBC)	The gov't PVBC	The fiscal theory of the price level (FTPL)
0	0000	0000	000000
		00000	0000000000
			00
			00000000000

The FTPL with an interest rate peg

- We saw that setting a constant interest rate \overline{R} would deliver indeterminate P_0 (and sunspots)
- Suppose now we set T_0 fixed, $T_t = \overline{T}P_{t-1}$ for some constant \overline{T} .
- Check transversality condition (or gov't PVBC): what prices are consistent with competitive equilibrium?

Introduction	The household present-value budget constr. (PVBC)	The gov't PVBC	The fiscal theory of the price level (FTPL)
0	0000	0000	

Gov't PVBC under fixed real taxes - 1

• Need to check

$$W_{0} = \frac{\bar{R}}{1+\bar{R}}M_{0} + \sum_{s=0}^{\infty} E_{0} \left[z_{0,s+1} \left(P_{s}\bar{T} + \frac{\bar{R}}{1+\bar{R}}M_{s+1} \right) \right]$$

Introduction The household present-value budget constr. (PVBC) The gov't PVBC The fiscal theory of the price level (FTPL)

Gov't PVBC under fixed real taxes - 1

Need to check

$$W_{0} = \frac{\bar{R}}{1+\bar{R}}M_{0} + \sum_{s=0}^{\infty} E_{0} \left[z_{0,s+1} \left(P_{s}\bar{T} + \frac{\bar{R}}{1+\bar{R}}M_{s+1} \right) \right]$$

• Use CIA, Friedman distortion:

$$M_s = P_s c_{1s} = P_s \bar{c}$$
, where $\bar{c} := (u')^{-1} (1 + \bar{R})$

Need to check

$$W_{0} = \frac{P_{0}\bar{c}\bar{R}}{1+\bar{R}} + \sum_{s=0}^{\infty} E_{0}\left[z_{0,s+1}P_{s}\bar{T}\right] + \frac{\bar{c}\bar{R}}{1+\bar{R}}\sum_{s=0}^{\infty} E_{0}\left[z_{0,s+1}P_{s+1}\right]$$

Introduction The household present-value budget constr. (PVBC) The gov't PVBC The fiscal theory of the price level (FTPL)

Gov't PVBC under fixed real taxes - 2

From CE conditions

•
$$\lambda_t P_t = u'(c_{1t}) = u'(\bar{c})$$

- $z_{t,t+1}P_{t+1} = \beta \lambda_{t+1}P_{t+1}/\lambda_t = \beta P_t$ (note no expectation)
- Recursively, $z_{0,t+1}P_{t+1} = \beta^{t+1}P_0$ (also, $E_0(z_{s,s+1}) = 1/(1 + \overline{R})$)

Substitute, need to check

$$W_0=rac{P_0}{(1-eta)(1+ar{R})}[ar{c}ar{R}+ar{T}]$$

(□) (圖) (필) (필) (필) (필) (21/47)

Introduction	The household present-value budget constr. (PVBC)	The gov't PVBC	The fiscal theory of the price level (FTPL)
0	0000	0000	000000
			00000000000

The FTPL in action

Equation to check:

$$W_0=rac{P_0}{(1-eta)(1+ar{R})}[ar{c}ar{R}+ar{T}]$$

イロト 不得 トイヨト イヨト 二日

22 / 47

- W₀ given (initial condition)
- \bar{T}, \bar{R} given, \bar{c} determined by \bar{R}
- \implies at most one P_0 will work!
- Solution exists if sign $(W_0) = \text{sign}(\bar{T} + \bar{R}\bar{c})$

Economic intuition on the FTPL

- Initial nominal government liabilities: W₀
- Gov't PVBC: PV of gov't surpluses = liabilities
- Given fiscal policy, PV of taxes fixed real amount
- Seigniorage $(\bar{R}\bar{c})$ also fixed real amount
- Price level must be the ratio of nominal liabilities to real surpluses

More economic intuition on the FTPL

- Under the FTPL, bonds are claims to money
- Money (and thus bonds) is an entitlement to tax revenues, cannot be worthless
- Suppose P_0 above equilibrium level and $W_0 > 0$
- Gov't has excess resources ⇒ households do not have enough wealth to support their consumption
- \implies households cut back on their consumption
- Excess supply ⇒ prices go down, until equilibrium attains

Why intuition in previous slide is loose

- Previous slide describes a process by which the equilibrium is attained
- But this is really a mental process
- The economy is always in equilibrium
- "Starting from *P*₀ low" is a thought experiment, we do not model this

Introduction The household present-value budget constr. (PVBC) The gov't PVBC The fiscal theory of the price level (FTPL)

The FTPL and sunspots

- Without FTPL, under a fixed interest rate peg, we got lots of sunspot equilibria
- Sunspot equilibrium: inflation can be random
- Just as FTPL pins down P₀, it kills all sunspots as well (repeat algebra from period 1)

Introduction The household present-value budget constr. (PVBC) The gov't PVBC The fiscal theory of the price level (FTPL)

The FTPL and CB independence

- FTPL is the only complete theory of what pins down the price level
- Unpleasant feature: it's not CB, it's Treasury that matters!!

Introduction	The household present-value budget constr. (PVBC)	The gov't PVBC	The fiscal theory of the price level (FTPL)
0	0000	0000	000000000000000000000000000000000000000
			00 00000000000

The effect of uncertainty and fiscal news: before the news breaks

- Introduce uncertainty in a single period, $T_{T+1} = P_T(\bar{T} + \tilde{T}_{T+1})$
- $ilde{T}_{T+1}$ revealed at time t < T+1, and $E_s ilde{T}_{T+1} = 0$ for s < t
- Note: similar logic when t = T + 1, but equations a bit more involved because jump in taxes and jump in prices occur at the same time ⇒ jump in real taxes depends on jump in prices

Introduction	The household present-value budget constr. (PVBC)	The gov't PVBC	The fiscal theory of the price level (FTPL)
0	0000	0000	000000
		00000	0000000000
			00
			00000000000

Period 0

• We still get

$$W_0 = \frac{R_0}{1+R_0}M_0^S + \sum_{s=0}^{\infty} E_0 \left[z_{0,t+1} \left(T_{t+1} + \frac{R_{t+1}}{1+R_{t+1}}M_{t+1}^S \right) \right]$$

$$W_{0} = \frac{P_{0}\bar{c}\bar{R}}{1+\bar{R}} + \sum_{t=0}^{\infty} E_{0} \left[z_{0,t+1}P_{t}T_{t+1} \right] + \frac{\bar{c}\bar{R}}{1+\bar{R}} \sum_{t=0}^{\infty} E_{0} \left[z_{0,t+1}P_{t+1} \right]$$

• Risk neutrality crucial here $(z_{0,t+1}P_{t+1} = \beta^t P_0)$

$$W_0 = \frac{P_0 \bar{c} \bar{R}}{(1 + \bar{R})(1 - \beta)} + P_0 \sum_{t=0}^{\infty} \beta^t E_0 [T_{t+1}] = \frac{P_0 (\bar{c} \bar{R} + \bar{T})}{(1 - \beta)(1 + \bar{R})}$$

 Without risk neutrality, fiscal risk would have an effect on expected values

Introduction	The household present-value budget constr. (PVBC)	The gov't PVBC	The fiscal theory of the price level (FTPL)
0	0000	0000	0000000
		00000	00000000000
			00
			00000000000

Subsequent periods

• Can verify that the PVBC holds for all periods $s \ge 0$:

$$W_{s} = \frac{R_{s}}{1+R_{s}}M_{s}^{S} + \sum_{\nu=s}^{\infty} E_{s} \left[z_{s,\nu+1} \left(T_{\nu+1} + \frac{R_{\nu+1}}{1+R_{\nu+1}}M_{\nu+1}^{S} \right) \right]$$

But also (flow bc + mkt clearing)

$$W_{s+1} = W_s(1+R_s) - T_{s+1} - R_s M_s$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

30 / 47

Introduction	The household present-value budget constr. (PVBC)	The gov't PVBC	The fiscal theory of the price level (FTPL)
0	0000	0000	0000000
		00000	00000000000
			00
			00000000000

Periods 0 < s < t

$$E_s T_v = \overline{T} \quad s \leq v, \quad s < t$$

From PVBC

$$W_s = \frac{P_s}{(1-\beta)(1+\bar{R})}[\bar{c}\bar{R}+\bar{T}]$$

• From flow BC (and PV as of s-1)

$$W_{s} = W_{s-1}(1+\bar{R}) - P_{s-1}(\bar{T}+\bar{c}\bar{R}) = rac{P_{s-1}\beta}{1-\beta}[\bar{c}\bar{R}+\bar{T}]$$

• Get $P_s = \beta P_{s-1}/(1+\bar{R})$

Introduction	The household present-value budget constr. (PVBC)	The gov't PVBC	The fiscal theory of the price level (FTPL)
0	0000	0000	

Periods 0 < s < t

$$E_s T_v = \overline{T} \quad s \leq v, \quad s < t$$

From PVBC

$$W_s = \frac{P_s}{(1-\beta)(1+\bar{R})}[\bar{c}\bar{R}+\bar{T}]$$

• From flow BC (and PV as of s-1)

$$W_{s} = W_{s-1}(1+ar{R}) - P_{s-1}(ar{T}+ar{c}ar{R}) = rac{P_{s-1}eta}{1-eta}[ar{c}ar{R}+ar{T}]$$

• Get
$$P_s = \beta P_{s-1}/(1+\bar{R})$$

• Same as Euler equation, but no uncertainty (sunspots not possible; here risk neutrality not important, just no news)

31 / 47

Introduction	The household present-value budget constr. (PVBC)	The gov't PVBC	The fiscal theory of the price level (FTPL)
0	0000	0000	000000
		00000	0000000000
			0000000000

Period t

$$E_t T_v = \overline{T}$$
 $v \neq T+1$, $E_t T_{T+1} = \overline{T} + \widetilde{T}_{T+1}$

From PVBC

$$W_t = \frac{P_t}{(1-\beta)(1+\bar{R})}[\bar{c}\bar{R}+\bar{T}] + \frac{\beta^{T-t}\tilde{T}_{T+1}P_t}{1+\bar{R}}$$

• From flow BC (and PV as of t-1)

$$W_t = rac{P_{t-1}eta}{1-eta}[ar{c}ar{R}+ar{T}]$$

• Get

$$\frac{1}{P_t} = \frac{1}{P_{t-1}} \left[\frac{1}{\beta(1+\bar{R})} + \frac{\beta^{T-t}(1-\beta)\tilde{T}_{T+1}}{\beta(1+\bar{R})(\bar{T}+\bar{c}\bar{R})} \right]$$

 Euler holds (expected value as of t − 1), still no sunspots, price jumps on fiscal news

Introduction	The household present-value budget constr. (PVBC)	The gov't PVBC	The fiscal theory of the price level (FTPL)
0	0000	0000	0000000 0000000000 00

Period $s \ge t + 1$

- Homework
- Verify that $P_s = \beta P_{s-1}/(1+\bar{R})$
- No uncertainty again, no sunspots

Patching up CB independence

• Is that a death knell for CB independence?

Patching up CB independence

- Is that a death knell for CB independence?
- CB retains control of inflation after time 0 (it is deterministic and equal to $\beta(1 + \overline{R})$)
- Also, no more pesky sunspots

Combining local determinacy with FTPL

- Start from an active Taylor rule $(\alpha > 1)$
- Add a fiscal policy that prunes equilibria with very high or very low inflation
- On a day-to-day basis inflation responds the way it would in the locally-unique equilibrium

Active and Passive Monetary Policy Rules

- Recall Taylor principle for interest-rate rules:
 - α > 1: strong response to inflation, Fisher equation is a divergent difference equation (except for SS)
 - $\alpha < 1$: weak response to inflation, Fisher equation is convergent
- When Fisher equation is divergent, we say that monetary policy is active
- When Fisher equation is convergent, we say that monetary policy is passive

Active and Passive Fiscal Policy Rules

• Same "active" and "passive" language applies to fiscal policy rules, but what is the relevant difference equation?

Active and Passive Fiscal Policy Rules

- Same "active" and "passive" language applies to fiscal policy rules, but what is the relevant difference equation?
- The gov't budget constraint!
- Define $H_t := E_0 \left[z_{0,t} \left(\frac{B_t^S}{1+R_t} + M_t^S \right) \right]$

Get

$$H_{t} = H_{t-1} + E_{0}[M_{t-1}^{S}(z_{0,t} - z_{0,t-1})] - E_{0}[z_{0,t}T_{t}] = H_{t-1} - E_{0}\left[\frac{z_{0,t-1}M_{t-1}^{S}R_{t-1}}{1 + R_{t-1}}\right] - E_{0}[z_{0,t}T_{t}]$$
(1)

Introduction	The household present-value budget constr. (PVBC)	The gov't PVBC	The fiscal theory of the price level (FTPL)
0	0000	0000	0000000
		00000	0000000000
			00000000000

Initial condition

$$H_0 = \frac{B_0^S}{1+R_0} + M_0^S = W_0$$

< □ ト < □ ト < 直 ト < 直 ト < 直 ト 目 の Q (~ 38 / 47

0 0000 00000 000000 00000 00000000000 00000 000000	Introduction	The household present-value budget constr. (PVBC)	The gov't PVBC	The fiscal theory of the price level (FTPL)
00000000	0	0000		0000000000

Why do we write the budget constraint as in the previous slides?

Because it is the left-hand side that has to converge to 0 for $\ensuremath{\mathsf{PVBC}}$ to hold

Example of a Passive Fiscal Policy Rule

- Passive fiscal policy rule = difference equation converges to 0 no matter what P₀ is
- Technical assumption : $\lim_{R \to \infty} R(u')^{-1}(1+R) < \infty$
- \implies implies $R(u')^{-1}(1+R) < \overline{S}$, i.e., seigniorage revenues are bounded

$$T_t = \gamma (M_{t-1}^S + B_{t-1}^S)$$

With $\gamma \in (0, 1)$: taxes cover at least fraction γ of nominal liabilities

	Introduction	The household present-value budget constr. (PVBC)	The gov't PVBC	The fiscal theory of the price level (FTPL)
00	0	0000		
000000000			00000	0000000000
				00000000000

Verifying that the previous rule is passive - 1

Substitute fiscal policy rule

$$\begin{aligned} H_t = H_{t-1} - E_0 \left[z_{0,t-1} \left(\frac{M_{t-1}^S R_{t-1}}{1 + R_{t-1}} + \gamma \frac{M_{t-1}^S + B_{t-1}^S}{1 + R_{t-1}} \right) \right] \\ = (1 - \gamma) H_{t-1} - (1 - \gamma) E_0 \left[z_{0,t-1} \frac{M_{t-1}^S R_{t-1}}{1 + R_{t-1}} \right], \quad t > 0 \end{aligned}$$

<ロト < 回 ト < 画 ト < 画 ト < 画 ト < 画 ト < 画 ト 41/47

Introduction	The household present-value budget constr. (PVBC)	The gov't PVBC	The fiscal theory of the price level (FTPL)
0	0000	0000	000000
		00000	0000000000
			00
			0000000000

Verifying that the previous rule is passive - 2

From competitive equilibrium

$$z_{0,t-1} = \frac{\beta^{t-1}(1+R_{t-1})P_0}{P_{t-1}(1+R_0)}$$

$$H_{t} = (1 - \gamma) \left(H_{t-1} - (1 + R_{0})^{-1} \beta^{t-1} \frac{R_{t-1} M_{t-1}^{S} P_{0}}{P_{t-1}} \right), \quad t > 0$$

Use Friedman distortion, CIA if $R_t > 0$, and technical assumption:

$$|H_t| \leq (1-\gamma)|H_{t-1}| + (1-\gamma)\beta^{t-1}(1+R_0)^{-1}P_0\bar{S}, \quad t>0$$

Introduction	The household present-value budget constr. (PVBC)	The gov't PVBC	The fiscal theory of the price level (FTPL)
0	0000	0000	0000000
		00000	0000000000
			00
			000000000000

Verifying that the previous rule is passive - 3

$$\begin{split} |H_t| &\leq (1-\gamma)^t |H_0| + (1+R_0)^{-1} P_0 \bar{S} \sum_{s=0}^{t-1} \beta^s (1-\gamma)^{t-s} = \\ (1-\gamma)^t \left[|H_0| + \frac{(1+R_0)^{-1} P_0 \bar{S} \left(1 - \left(\frac{\beta}{1-\gamma}\right)^t\right)}{1 - \frac{\beta}{1-\gamma}} \right] = \\ (1-\gamma)^t \left[|H_0| + \frac{(1+R_0)^{-1} P_0 \bar{S}}{1 - \frac{\beta}{1-\gamma}} \right] - \frac{\beta^t (1+R_0)^{-1} P_0 \bar{S}}{1 - \frac{\beta}{1-\gamma}} \to_{t \to \infty} 0. \end{split}$$

<ロト < 回 > < 直 > < 直 > < 直 > < 直 > < 三 > < 三 > < 3 / 47

Active Fiscal Policy Rule

- Active fiscal policy rule = difference equation does not converge to 0, except for one value of P₀
- Example: $T_t = \overline{T}P_{t-1}$ (with $R_t = \overline{R}$)

A Difference between Exploding Paths

• Paths where inflation explodes according to

$$(\log \pi_{t+1} - \log \bar{\pi}) = \alpha(\log \pi_t - \log \bar{\pi})$$

are not ruled out by any equilibrium conditions

· Paths where debt explodes according to

$$H_{t} = H_{t-1} = H_{t-1} - E_0 \left[\frac{z_{0,t-1} M_{t-1}^S R_{t-1}}{1 + R_{t-1}} \right] - E_0 [z_{0,t} T_t]$$

violate the households' transversality condition, ruled out by equilibrium

A Weaker Notion of Active Fiscal Policy

- Compute equilibrium difference equation for W_t/P_t
- Fiscal policy active if the difference equation is explosive
- Adopted by Bianchi, Melosi and coauthors, sometimes Leeper and coauthors,...
- Rationale: equilibria with exploding household wealth are weird...
- ... but they are still equilibria, unless the explosion is sufficiently fast to violate transversality

Introduction	The household present-value budget constr. (PVBC)	The gov't PVBC	The fiscal theory of the price level (FTPL)
0	0000	0000	0000000
			0000000000

A Final Classification

	Fiscal Policy	
	Passive	Active (strong sense)
Interest-rate rule: Passive	Indeterminacy	Uniqueness
Interest-rate rule: Active	Local uniqueness	Uniqueness, explosive