Adding Long-Term Debt

Marco Bassetto (based on Cochrane, 2001)

March 28, 2024

Motivation

- Last time, we saw that fiscal news create a jump in the price level
- Cochrane (2005) likens gov't debt to Microsoft stock
- Microsoft stock is a claim to Microsoft profits
- Gov't debt is a claim to gov't primary surpluses
- Problem:
- The price of Microsoft share jumps from one day to the next, very volatile
- Inflation very sluggish (yes, even now)

One Way of Smoothing Jumps: Long-Term Debt

- So far, all of the debt had one-period maturity
- In practice, government issues many different maturities
- What happens in response to fiscal news in this case?

Revisiting the One-Time Fiscal Shock with Two-Period Debt

- Same economy as in our previous classes
- Now, two government bonds: one-period bonds as before, and two-period bonds $D_{2, t}$ promises to pay $D_{2, t}$ dollars in $t+2$
- Two-period interest rate $R_{2, t}$.

Household flow budget constraint

$$
\begin{align*}
& B_{t-1}+M_{t-1}+\frac{D_{2, t-1}}{1+R_{t}}+P_{t-1}\left(y-c_{1 t-1}-c_{2 t-1}\right)+A_{t}-T_{t} \geq \\
& \frac{B_{t}}{1+R_{t}}+M_{t}+E_{t}\left(z_{t+1} A_{t+1}\right)+\frac{D_{2, t}}{1+R_{2, t}} \tag{1}
\end{align*}
$$

- Used no-arbitrage condition to observe that the price of two-period bonds after one period is $1 /\left(1+R_{t}\right)$
- To save notation, lump all bonds maturing in one period in B_{t}, regardless of when they were issued
- So, B_{t-1} contains one-period bonds issued in $t-1$ and two-period bonds issued in $t-2$
- New definition of nominal wealth

$$
W_{t}:=B_{t-1}+M_{t-1}+\frac{D_{2, t-1}}{1+R_{t}}+P_{t-1}\left(y-c_{1 t-1}-c_{2 t-1}\right)+A_{t}-T_{t}
$$

No-Ponzi condition

$$
W_{t} \geq-\limsup _{n \rightarrow \infty} \sum_{s=t}^{n} E_{t}\left[z_{t, s+1}\left(P_{s} y_{s}-T_{s+1}\right)\right]
$$

with the new definition of nominal wealth

Government budget constraint

$$
B_{t-1}^{S}+M_{t-1}^{S}+\frac{D_{2, t-1}^{S}}{1+R_{t}}-T_{t}=\frac{B_{t}^{S}}{1+R_{t}}+M_{t}^{S}+\frac{D_{2, t}^{S}}{1+R_{2, t}}
$$

$D_{2, t}^{S}:$ Two-period bonds supplied by government

Competitive Equilibrium

Homework for you

New first-order condition

$$
\frac{\lambda_{t}}{1+R_{2, t}}=\beta E_{t} \frac{\lambda_{t+1}}{1+R_{t+1}}, \quad t \geq 0
$$

Note: the transversality condition is unchanged (except for the definition of W_{t})

Key Characterizing Equations

- Friedman distortion:

$$
\begin{gather*}
u^{\prime}\left(c_{1 t}\right)=1+R_{t}, \quad t \geq 0 \tag{2}\\
R_{t}>0 \Longrightarrow M_{t}=P_{t} c_{1 t}, \quad t \geq 0 \tag{3}
\end{gather*}
$$

- Fisher equation

$$
\begin{equation*}
1=E_{t}\left[\beta\left(1+R_{t+1}\right) \frac{P_{t}}{P_{t+1}}\right] \quad t \geq 0 \tag{4}
\end{equation*}
$$

- Two-period bond pricing

$$
\frac{1}{1+R_{2, t}}=\frac{\beta}{1+R_{t}} E_{t}\left[\frac{P_{t}}{P_{t+1}}\right]
$$

Household PVBC

$$
\begin{aligned}
& W_{0} \geq \frac{R_{0}}{1+R_{0}} M_{0}+\sum_{s=0}^{\infty} E_{0}\left[z_{0, s+1}\left(T_{s+1}-P_{s} y_{s}\right)\right] \\
& +\sum_{s=0}^{\infty} E_{0}\left[z_{0, s+1}\left(P_{s}\left(c_{1 s}+c_{2 s}\right)+\frac{R_{s+1}}{1+R_{s+1}} M_{s+1}\right)\right]
\end{aligned}
$$

Homework: verify that the above is still correct (with the new definition of W_{0})

Revisiting the effect of uncertainty and fiscal news

- Same shock as before
- Introduce uncertainty in a single period, $T_{T+1}=P_{T}\left(\bar{T}+\tilde{T}_{T+1}\right)$
- \tilde{T}_{T+1} revealed at time $t<T+1$, and $E_{s} \tilde{T}_{T+1}=0$ for $s<t$

The boring periods

- We still get

$$
W_{0}=\frac{R_{0}}{1+R_{0}} M_{0}^{S}+\sum_{s=0}^{\infty} E_{0}\left[z_{0, t+1}\left(T_{t+1}+\frac{R_{t+1}}{1+R_{t+1}} M_{t+1}^{S}\right)\right]
$$

- Now household initial wealth includes $D_{2,-1} /\left(1+R_{0}\right)$
- Homework: repeat the analysis from the one-period economy and show that nothing changes in periods $s<t$ and in period $s>t$

A Neutrality result

$$
W_{t}=\frac{P_{t}}{(1-\beta)(1+\bar{R})}[\bar{c} \bar{R}+\bar{T}]+\frac{\beta^{T-t} \tilde{T}_{T+1} P_{t}}{1+\bar{R}}
$$

Reminder:
$W_{t}:=B_{t-1}+M_{t-1}+\frac{D_{2, t-1}}{1+R_{t}}+P_{t-1}\left(y-c_{1 t-1}-c_{2 t-1}\right)+A_{t}-T_{t}$

- Same equation as with one-period debt
- W_{t} includes now two-period bonds
- But their value is $D_{2, t-1} /(1+\bar{R})$, predetermined, W_{t} still known at $t-1$ and cannot respond to \tilde{T}_{T+1}

Is Long-Term Debt Irrelevant Then?

- NO!
- Things are different if we play with interest rates (so $R_{s} \neq \bar{R}$ all the time)
- To simplify life, assume $u\left(c_{1 t}\right)=\alpha \hat{u}\left(c_{1 t}\right)$ with $\alpha \rightarrow 0$ (cashless limit)
- Can abstract from seigniorage revenues
- PVBC (+equilibrium!!) simplifies to

$$
W_{s}=\sum_{v=s}^{\infty} E_{s}\left[z_{s, v+1} T_{v+1}\right]
$$

What if interest rates move around?

Solve again for a generic path $\left\{R_{s}\right\}_{s=0}^{\infty}$ (where R_{s} can respond to information available at s)

- First, for the one-period-debt economy
- Then, the two-period-debt economy

Periods $s<t$

- PVBC simplifies to

$$
W_{s}=\frac{\bar{T} P_{s}}{\left(1+R_{s}\right)(1-\beta)}
$$

- With one-period debt, W_{s} predetermined:

$$
W_{s}=M_{s-1}+B_{s-1}-\bar{T} P_{s-1}
$$

- Get

$$
\frac{W_{s}\left(1+R_{s}\right)}{P_{s}}=\frac{\bar{T}}{1-\beta}
$$

- Use Euler ($s>0$)

$$
\frac{W_{s}}{P_{s-1}}=\frac{\beta \bar{T}}{1-\beta}
$$

What happens if I move $1+R_{s}$?

- P_{s} goes up proportionally
- Also (for $s<t-1$)

$$
W_{s+1}=W_{s}\left(1+\bar{R}_{s}\right)-P_{s} \bar{T}=\frac{P_{s} \bar{T} \beta}{1-\beta}
$$

- So future nominal wealth goes up proportionally
- Fisher equation: higher rates, more inflation, nothing on the real front
- Same holds also for W_{t+1} (goes up proportionally); homework

What happens with two-period debt?

$$
W_{s}=M_{s-1}+B_{s-1}+\frac{D_{2, s-1}}{1+R_{s}}-\bar{T} P_{s-1}
$$

- No longer predetermined!!
- Can reduce household wealth in period s by increasing R_{s}
- Expected changes do not work:

$$
\begin{aligned}
& \frac{1}{1+R_{2, s-1}}=\frac{\beta}{1+R_{s-1}} E_{s-1}\left[\frac{P_{s-1}}{P_{s}}\right] \\
& 1=E_{s-1}\left[\beta\left(1+R_{s}\right) \frac{P_{s-1}}{P_{s}}\right] \quad t \geq 0
\end{aligned}
$$

- But can make R_{t} conditional on \tilde{T}_{T+1}

Period t

Have

$$
\begin{aligned}
& W_{t}=W_{t-1}\left(1+R_{t-1}\right)-\bar{T} P_{t-1}+D_{2, t-1}\left[\frac{1}{1+R_{t}}-\frac{1+R_{t-1}}{1+R_{2, t-1}}\right] \\
& -\frac{R_{t-1}}{1+R_{t-1}} M_{t-1} \\
& \approx W_{t-1}\left(1+R_{t-1}\right)-\bar{T} P_{t-1}+D_{2, t-1}\left[\frac{1}{1+R_{t}}-\frac{1+R_{t-1}}{1+R_{2, t}}\right]= \\
& \frac{\beta \bar{T} P_{t-1}}{1-\beta}+D_{2, t-1}\left[\frac{1}{1+R_{t}}-\frac{1+R_{t-1}}{1+R_{2, t-1}}\right]= \\
& \frac{\beta \bar{T} P_{t-1}}{1-\beta}+D_{2, t-1}\left[\frac{1}{1+R_{t}}-\beta E_{t-1}\left(\frac{P_{t-1}}{P_{t}}\right)\right]
\end{aligned}
$$

Inflation

Looking forward:

$$
\begin{aligned}
& \frac{\beta \bar{T} P_{t-1}}{1-\beta}+D_{2, t-1}\left[\frac{1}{1+R_{t}}-\beta E_{t-1}\left(\frac{P_{t-1}}{P_{t}}\right)\right]= \\
& \frac{P_{t}}{(1-\beta)\left(1+R_{t}\right)} \bar{T}+\frac{\beta^{T-t} \tilde{T}_{T+1} P_{t}}{1+R_{t}}
\end{aligned}
$$

- If R_{t} is known at $t-1$, same as before (LHS simplifies)
- If R_{t} covaries negatively with \tilde{T}_{T+1}, LHS \uparrow when \tilde{T}_{T+1} goes up...
- ... less need for P_{t} to adjust
- \Longrightarrow Can get less of a jump in P_{t} for a given fiscal shock
- Trade-off between inflation and interest-rate smoothing

Why 2-period debt is special in a CIA model

- With two-period debt,

$$
\begin{aligned}
& W_{t}=B_{t-1}+\frac{D_{2, t-1}}{1+R_{t}}-\bar{T} P_{t-1} \\
& =\frac{\beta \bar{T} P_{t-1}}{1-\beta}+D_{2, t-1}\left[\frac{1}{1+R_{t}}-\beta E_{t-1}\left(\frac{P_{t-1}}{P_{t}}\right)\right]
\end{aligned}
$$

- Only R_{t} affects W_{t}
- Note: surprises in R_{t} do not matter for expected inflation

$$
1=\beta E_{t-1}\left[\frac{P_{t-1}\left(1+R_{t}\right)}{P_{t}}\right]
$$

- $R_{t+1}, R_{t+2, \ldots}$ irrelevant

N-period debt

- With N-period debt,

$$
W_{t}=B_{t-1}+\sum_{j=2}^{N} \frac{D_{j, t-1}}{1+R_{j-1, t}}-\bar{T} P_{t-1}
$$

- Now, expectations about future interest rates affect the long-term rates
- With N-period debt, $R_{t}, \ldots, E_{t} R_{t+N-1}$ matter \Longrightarrow more smoothing
- ... but the Euler equation tells me that changing $E_{t} R_{t+j}$ changes future expected inflation
- Trade-off between smoothing current and future inflation

Loglinearization

- Previous expressions nonlinear, messy
- Want to have better intuition, and also run some policy experiments more easily
- Loglinearize around $\pi_{t}=\bar{\pi}$, constant real debt, geometric maturity structure, $T_{t} / P_{t-1}=\bar{T}$

Geometric maturity structure: notation

- Face value of debt issued in period $t-1$ maturing in s periods: $D_{s, t-1}$
- Note: $D_{1, t-1}=B_{t-1}$
- Assume $D_{n, t-1}=\phi^{n-1} D_{1, t-1}$
- Value of total debt at the beginning of period t :

$$
B_{t-1} \sum_{s=t}^{\infty} \frac{\phi^{s-t}}{1+R_{s-t, t}}
$$

- Definitions $R_{0, t}:=0 R_{1, t}:=R_{t}$

Reference steady state

- Euler equation: $1+\bar{R}=\bar{\pi} / \beta$
- Asset-pricing kernel: $\bar{z}=\beta / \bar{\pi}$
- n-period interest rate (Euler equation for n-period bonds): $1+\bar{R}_{n}=(\bar{\pi} / \beta)^{n}$
- Define $\hat{\phi}:=\beta \phi / \bar{\pi}$ (measure of real geometric decay of debt)
- Government present-value relationship:

$$
\frac{\bar{T}}{1-\beta}=\frac{\bar{b}}{1-\hat{\phi}}
$$

Loglinearization

- $E_{t}\left[\tilde{R}_{t+1}-\tilde{\pi}_{t+1}\right]=0$
- Note: \tilde{R}_{t+1} log-deviation of $1+R_{t+1}$

$$
\begin{aligned}
& \tilde{R}_{n, t}=\tilde{R}_{t}+E_{t} \sum_{j=1}^{n-1} \tilde{\pi}_{t+j}=\tilde{R}_{t}+E_{t} \sum_{j=1}^{n-1} \tilde{R}_{t+j} \\
& (1-\beta)\left[\tilde{T}_{t}+\beta E_{t} \sum_{s=t}^{\infty} \beta^{s-t} \tilde{T}_{t+s+1}\right]+\beta\left(\tilde{\pi}_{t}-\tilde{R}_{t}\right) \\
& =\tilde{b}_{t-1}-\hat{\phi} \tilde{R}_{t}-(1-\hat{\phi}) \sum_{j=1}^{\infty} \hat{\phi}^{j} E_{t} \tilde{\pi}_{t+j}
\end{aligned}
$$

- \tilde{b}_{t} : log-deviation of $\left(B_{t} / P_{t}\right)$ (real one-period debt)

Key equation in innovation form

$$
\begin{aligned}
& \beta\left(\tilde{\pi}_{t+1}-\tilde{R}_{t+1}\right)+(1-\beta)\left[\tilde{T}_{t+1}-E_{t} \tilde{T}_{t+1}\right. \\
& \left.+\beta\left(E_{t+1} \sum_{s=t+1}^{\infty} \beta^{s-t-1} \tilde{T}_{t+s+2}-E_{t} \sum_{s=t+1}^{\infty} \beta^{s-t-1} \tilde{T}_{t+s+2}\right)\right] \\
& =-\hat{\phi}\left(\tilde{R}_{t+1}-E_{t} \tilde{R}_{t+1}\right)-(1-\hat{\phi}) \sum_{j=1}^{\infty} \hat{\phi}^{j}\left(E_{t+1} \tilde{\pi}_{t+j+1}-E_{t} \tilde{\pi}_{t+j+1}\right)
\end{aligned}
$$

- The higher $\hat{\phi}$, the more fiscal shocks can be absorbed by innovations in future inflation rather than current inflation

Debt policy vs. interest-rate policy

Effect on the price level of an increase in 10 period debt at time 0 that is allowed to mature, starting in a steady state with a geometric maturity structure, from Cochrane (2001)

How do we interpret Cochrane's experiment?

(Neglect money)

- Think of a world with only short-term debt

$$
B_{t-1}-T_{t}=\frac{B_{t}+\Delta B_{t}}{1+R_{t}}
$$

- \Longrightarrow Need $1+R_{t}$ to go up one for one with the increase in debt
- Note: we may have $W_{t} \neq \frac{\beta \bar{T} P_{t-1}}{1-\beta}$ if the policy is a surprise
- Period $t+1$

$$
W_{t+1}=B_{t}+\Delta B_{t}=\frac{\beta \bar{T} P_{t}}{1-\beta}=\frac{B_{t+1}}{1+R_{t+1}}
$$

- \Longrightarrow Euler equation means P_{t} goes up one for one with $1+R_{t}$
- \Longrightarrow works well for the first two equalities
- \Longrightarrow Need $1+R_{t+1}$ to go down one for one for last equality

Period $t+2$: back to same as before

$$
W_{t+2}=B_{t+1}=\frac{\beta \bar{T} P_{t+1}}{1-\beta}
$$

- P_{t+1} unaffected (inflation down one for one, matching interest rate)
- Experiment is best understood as a change in interest rates R_{t} and R_{t+1}
- Similar intuition for longer-term debt, but now the interest rate changes span N periods and are more complicated

Some deeper questions

- Cochrane lets face value of bonds adjust, interest rate endogenous
- If we set interest rate, we need to let one-period bonds adjust as a residual:
- Households free to trade money for bonds at given nominal rate
- Tricky to impose geometric maturity structure: how is the supply of other types of bonds determined?
- One possibility: auction long-term bonds in fixed quantities after short-term bonds have been issued

Why are these questions important?

- In section 6.2, Cochrane relates innovations in $D_{n, t}$ to (time t) innovations in current and expected future inflation
- In my structure, those are not the relevant metric
- It's innovations in current and expected future interest rates that matter
- The maturity structure has implications for the way we think about the trade-off between current and future movements in interest rates
- In Section 6.3, Cochrane adds the flexibility that allows him to get to our results (that long-term debt is good)
- Solve for optimal path of prices
- Back out quantities of debt from his way of thinking about the problem

Optimal policy experiments

- Cochrane uses variance of inflation, or price level
- In our environment, unexpected inflation is costless
- High interest rates (and volatile interest rates) are bad instead
- By this metric, just fix R_{t} (close to zero) and let P_{t} do all the work
- Maturity structure irrelevant

What if we care about the variance of inflation?

$$
\begin{aligned}
& \beta\left(\tilde{\pi}_{t+1}-\tilde{R}_{t+1}\right)+\epsilon_{t+1} \\
& =-\hat{\phi}\left(\tilde{R}_{t+1}-E_{t} \tilde{R}_{t+1}\right)-(1-\hat{\phi}) \sum_{j=1}^{\infty} \hat{\phi}^{j}\left(E_{t+1} \tilde{\pi}_{t+j+1}-E_{t} \tilde{\pi}_{t+j+1}\right)
\end{aligned}
$$

- ϵ_{t+1} : innovation in PV of surpluses
- Let \tilde{R}_{t+1} do all the work (only in the cashless limit!)

Shut down R_{t+1}, what if we care about the variance of inflation?

$$
\begin{aligned}
& \tilde{\pi}_{t+1}-\tilde{R}_{t+1}+\epsilon_{t+1} \\
& =-\hat{\phi}\left(\tilde{R}_{t+1}-E_{t} \tilde{R}_{t+1}\right)-(1-\hat{\phi}) \sum_{j=1}^{\infty} \hat{\phi}^{j}\left(E_{t+1} \tilde{\pi}_{t+j+1}-E_{t} \tilde{\pi}_{t+j+1}\right)
\end{aligned}
$$

- We want to spread the pain as much as possible
- Long-term debt is good: can spread the effect of the shock across more periods more effectively
- In a real context, related to work by Lustig, Sleet, and Yeltekin (JME, 2008)
- Also related to work by Bhandari, Evans, Golosov, and Sargent

