Determinacy without the Taylor Principle

Marios Angeletos and Chen Lian Slides by Marco Bassetto

April 28, 2024

Weakness in Equilibrium Determinacy

- Whether we use the Taylor principle or the FTPL...
- ... determinacy is about expectations of events far in the future

Weakness in Equilibrium Determinacy

- Whether we use the Taylor principle or the FTPL...
- ... determinacy is about expectations of events far in the future
- What strategies will be credible that far in advance?
- Will people understand those strategies?
- Will "simple" solutions be focal points?
- Big literature on bounded rationality (limited attention, level- k thinking, "sparsity," ...)
- Today: imperfect recall

Punchline

- With imperfect recall, the "minimum state variable" solution prevails
- Sunspots do not arise
- Interest rate rules do not have to satisfy the Taylor principle

Punchline

- With imperfect recall, the "minimum state variable" solution prevails
- Sunspots do not arise
- Interest rate rules do not have to satisfy the Taylor principle
- Departures from perfect recall are very slight...
- ... but carefully placed in the right spots

The Model: IS/Euler Equation

- Stripped-down 3-equation NK model
- Loglinearized (look for linear equilibria)

$$
c_{t}=-\sigma\left(i_{t}-\tilde{E}_{t} \pi_{t+1}\right)+\tilde{E}_{t} c_{t+1}+\sigma \rho_{t}
$$

- Expectation gets a tilde because we will play with the information set

Phillips Curve

- Phillips curve:

$$
\pi_{t}=\kappa\left(c_{t}+\xi_{t}\right)
$$

- No forward-looking component in the Phillips curve
- Mostly for simplicity
- Sidesteps two big complications:
- Whose expectations? Households? Firms?
- What are you forming expectations about? (In learning, Euler equation vs. deeper learning, see Preston, IJCB, 2005)

Taylor Rule

$$
i_{t}=\phi \pi_{t}+z_{t}
$$

- No output (consumption): purely for simplicity

Main Difference Equation

- Substitute Taylor rule + Phillips curve into Euler
- Get

$$
c_{t}=\delta \tilde{E}_{t} c_{t+1}+\theta_{t}
$$

- θ_{t} : combination of all the shocks

$$
\delta=\frac{1+\sigma \kappa}{1+\phi \sigma \kappa}
$$

Two possibilities:

- $\phi>1 \Longrightarrow \delta<1$
- $\phi<1 \Longrightarrow \delta>1$

Shock Processes

- For tractability, work within linear-Gaussian world
- Other than that, very flexible structure
- Fundamentals:

$$
\begin{gathered}
\theta_{t}=q \cdot x_{t} \\
x_{t}=R x_{t-1}+\epsilon_{t}
\end{gathered}
$$

Stationarity: all eigenvalues are less than 1 in modulus

$$
\epsilon_{t} \sim N(0, \Sigma)
$$

- Sunspot (i.i.d.):

$$
\eta_{t} \sim N(0,1)
$$

(Stationary Linear) Equilibrium

A stochastic process $\left\{c_{t}\right\}_{t=0}^{\infty}$, adapted to $\left\{x_{s}, \eta_{s}\right\}_{s=-\infty}^{t}$, that satisfies

$$
\begin{gathered}
c_{t}=\delta \tilde{E}_{t} c_{t+1}+\theta_{t} \\
c_{t}=\sum_{k=0}^{\infty}\left[a_{k} \eta_{t-k}+\gamma_{k} \cdot x_{t-k}\right]
\end{gathered}
$$

the information restrictions that we will impose on \tilde{E}_{t}, and $\operatorname{Var}\left(c_{t}\right)<\infty$.

- Note: Stationarity rules out explosive equilibria.

Full-Info Benchmark

- Information set: the entire history of both shocks and endogenous variables.
- Note: shocks are enough. Any equilibrium can be represented as a function of shocks...
- Remember that past endogenous variables are linear functions of shocks (and possibly other past variables, recursive substitution)

Solving by Guess and Verify

$$
\begin{gathered}
c_{t}=\delta E_{t} c_{t+1}+\theta_{t}, \\
c_{t}=\sum_{k=0}^{\infty}\left[a_{k} \eta_{t-k}+\gamma_{k} \cdot x_{t-k}\right], \\
E_{t} x_{t+1}=R x_{t} \\
\Longrightarrow \\
\sum_{k=0}^{\infty}\left[a_{k} \eta_{t-k}+\gamma_{k} \cdot x_{t-k}\right]=\delta \sum_{k=0}^{\infty}\left[a_{k+1} \eta_{t-k}+\gamma_{k+1} \cdot x_{t-k}\right]+\left(q^{\prime}+\delta \gamma_{0}^{\prime} R\right) x_{t}
\end{gathered}
$$

Solution when $\delta<1(\phi>1)$

Match coefficients:

$$
\begin{gathered}
a_{k}=\delta a_{k+1} \\
\gamma_{k}=\delta \gamma_{k+1} k>0 \\
\gamma_{0}^{\prime}=\delta \gamma_{1}^{\prime}+q^{\prime}+\delta \gamma_{0}^{\prime} R \\
\Longrightarrow \\
a_{k+1}=(1 / \delta) a_{k} \Longrightarrow a_{k} \equiv 0 \\
\gamma_{k+1}=(1 / \delta) \gamma_{k}, k \geq 1 \Longrightarrow \gamma_{k} \equiv 0 k \geq 1 \\
\gamma_{0}^{\prime}=q^{\prime}(I-\delta R)^{-1}
\end{gathered}
$$

Unique stationary solution, no sunspots

Solution when $\delta>1(\phi<1)$

- Previous solution ("MSV") still works:

$$
\gamma_{0}^{\prime}=q^{\prime}(I-\delta R)^{-1}, \gamma_{k} \equiv 0, k \geq 1, a_{k} \equiv 0, k \geq 0
$$

- However, now we can add to it any arbitrary initial condition

$$
\left(\bar{a}_{0}, \bar{\gamma}_{0}\right)
$$

and set

$$
\begin{aligned}
& \bar{a}_{k}=\delta^{-k} \bar{a}_{0} \\
& \bar{\gamma}_{k}=\delta^{-k} \bar{\gamma}_{0}
\end{aligned}
$$

- Sunspot equilibria, indeterminate response to shocks

The Fun Begins: Imperfect Information

- A fraction $\lambda(1-\lambda)^{k}$ of people remember the history only up to period $t-k$
- Note: Agents do not remember $\left\{c_{t-k}\right\}_{k>0}$.

Main Result

Proposition 2

Regardless of δ, the (locally) unique equilibrium is the MSV equilibrium.

- Two pieces:
- The MSV is still an equilibrium
- Nothing else is

The MSV is still an equilibrium

$$
c_{t}=q^{\prime}(I-\delta R)^{-1} x_{t}
$$

Notes:

- Everybody knows x_{t}, so c_{t} is measurable wrt info of the private sector
- x_{t} is a sufficient statistic for forecasting x_{t+1} and hence c_{t+1}, so

$$
\tilde{E}_{t} c_{t+1}=q^{\prime}(I-\delta R)^{-1} \tilde{E}_{t} x_{t+1}=q^{\prime}(I-\delta R)^{-1} E_{t} x_{t+1}
$$

\Longrightarrow Euler equation holds as before

There are no other Equilibria - proof for i.i.d. case Try guess and verify again:

$$
\begin{gathered}
c_{t}=\delta \tilde{E}_{t} c_{t+1}+\theta_{t}, \\
\tilde{E}_{t} c_{t+1}=\sum_{k=0}^{\infty}\left[a_{k} \tilde{E}_{t} \eta_{t+1-k}+\gamma_{k} \cdot \tilde{E}_{t} x_{t+1-k}\right], \\
\tilde{E}_{t} \eta_{t-k}=(1-\lambda)^{k} \eta_{t-k} \\
\tilde{E}_{t} x_{t-k}=(1-\lambda)^{k} x_{t-k} \\
\Longrightarrow
\end{gathered}
$$

$$
\begin{aligned}
& \sum_{k=0}^{\infty}\left[a_{k} \eta_{t-k}+\gamma_{k} \cdot x_{t-k}\right] \\
& =\delta \sum_{k=0}^{\infty}\left[a_{k+1}(1-\lambda)^{k} \eta_{t-k}+(1-\lambda)^{k} \gamma_{k+1} \cdot x_{t-k}\right]+q \cdot x_{t}
\end{aligned}
$$

Solution, matching coefficients again

Match coefficients:

$$
\begin{gathered}
a_{k}=\delta(1-\lambda)^{k} a_{k+1} \\
\gamma_{k}=\delta(1-\lambda)^{k} \gamma_{k+1}, k>0 \\
\gamma_{0}=\delta \gamma_{1}+q
\end{gathered}
$$

- For k large, $\delta(1-\lambda)^{k}<1$: no sunspots, only MSV
- $a_{k} \equiv 0, \gamma_{0}=q, \gamma_{k} \equiv 0, k>0$

Complications out of i.i.d. case

- Need to compute $E_{t} x_{t-k}$ for people that do not remember that far back
- Filtering problem
- Algebra a lot more involved, but intuition carries over unchanged

Is it innocuous to assume only knowledge of shocks?

- NO!
- Suppose people remember perfectly $c_{t-1}, x_{t-1}, \eta_{t-1}$
- Keep i.i.d. assumption

Cranking out the Algebra

- Start from the guess:

$$
\begin{aligned}
& c_{t}=q \cdot x_{t}+\sum_{k=0}^{\infty} \delta^{-k}\left[\bar{a}_{0} \eta_{t-k}+\bar{\gamma}_{0} \cdot x_{t-k}\right] \\
& =q \cdot x_{t}+\delta^{-1}\left(c_{t-1}-q \cdot x_{t-1}\right)+\bar{a}_{0} \eta_{t}+\bar{\gamma}_{0} \cdot x_{t}
\end{aligned}
$$

- Now everybody who is forming expectations knows c_{t}, x_{t} :

$$
\tilde{E}_{t} c_{t+1}=\delta^{-1}\left(c_{t}-q \cdot x_{t}\right)
$$

- Get the same solution as full info, because $\left(c_{t}, x_{t}\right)$ are a sufficient statistic

Does it change of a few people forget?

- Suppose only a fraction $1-\lambda$ of people remember
$c_{t-1}, x_{t-1}, \eta_{t-1}$
- Guess a solution of the form

$$
\begin{aligned}
c_{t} & =q \cdot x_{t}+\sum_{k=0}^{\infty} \psi^{k}\left[\bar{a}_{0} \eta_{t-k}+\bar{\gamma}_{0} \cdot x_{t-k}\right] \\
& q \cdot x_{t}+\psi^{-1}\left(c_{t-1}-q \cdot x_{t-1}\right)+\bar{a}_{0} \eta_{t}+\bar{\gamma}_{0} x_{t}
\end{aligned}
$$

New algebra

$$
\tilde{E}_{t} c_{t+1}=\psi^{-1}\left(c_{t}-q \cdot x_{t}\right)(1-\lambda)
$$

- Substitute into difference equation:

$$
c_{t}=\delta(1-\lambda) \psi^{-1}\left(c_{t}-q \cdot x_{t}\right)+q \cdot x_{t}
$$

- As long as $\psi=\delta(1-\lambda)$, OK
- If $\delta>1$ and $\lambda \approx 0, \psi>1$
- Indeterminacy remains

Breaking the result with more (small) noise

- Suppose there is a fundamental shock ζ_{t} (arbitrarily small) that is completely forgotten at $t+1$
- (Retain i.i.d.) Normalize the MSV solution to

$$
c_{t}=q \cdot x_{t}+\zeta_{t}
$$

- Suppose we try to represent solution as

$$
c_{t}=q \cdot x_{t}+\zeta_{t}+\delta^{-1}\left(c_{t-1}-q \cdot x_{t-1}-\zeta_{t-1}\right)+\bar{a}_{0} \eta_{t}+\bar{\gamma}_{0} \cdot x_{t}
$$

- Problem: if c_{t-1} depends on sunspots, $c_{t-1}-\zeta_{t-1}$ is not measurable wrt info at time t
- Proposition 4 builds on this.

Other loose ends filled by the paper

- Full microfoundations \neq Euler equation
- Need longer-dated expectations
- Results go through

What have we learned?

- Sunspot equilibria require a lot of coordination
- Even a bit of disruption unravels them
- You need to be careful where that disruption occurs
- Heterogeneity plays an important role in this

Thinking about the Real World

- "Inflation" is a fairly abstract object
- We all consume different baskets
- We are exposed to different prices
- When the only reason I respond to η_{t} is that you respond, coordination will be challenging
- Need some "fundamental" push

